IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Recent Advances in Topological Insulators: Potential Applications in Spintronics and Quantum Computing

Dr. Surendra Kumar Singh

Assistant Professor, Department of Physics, VKS College Dharupur, Bikramganj

Email: Surendrakumarsingh430@Gmail.Com

Keywords: Topological Insulators, Spintronics, Quantum Computing

ABSTRACT

Topological insulators (TIs) are a revolutionary class of materials distinguished by their insulating bulk and conducting surface states, protected by time-reversal symmetry. This unique property has propelled TIs to the forefront of condensed matter physics and materials science, promising significant technological advancements, especially in spintronics and quantum computing. Originating from the theoretical framework of the quantum Hall effect, TIs were first identified in materials like bismuth selenide (Bi2Se3) and bismuth telluride (Bi2Te3). Recent developments have uncovered new TI materials, including ternary Heusler compounds and transition metal dichalcogenides, as well as twodimensional (2D) TIs. These discoveries have broadened the scope of potential applications. In spintronics, TIs exploit the spin of electrons for information processing, enabling the development of low-power devices such as spin-transfer torque (STT) devices, spin filters, and spin valves. In quantum computing, TIs can host Majorana fermions when coupled with superconductors, facilitating topological quantum computation with enhanced stability and fault tolerance. The quantum spin Hall effect in 2D TIs further aids in creating efficient and robust quantum devices. Ongoing research into TI materials and their properties continues to unlock new applications, promising a transformative impact on technology.

,,,,,,,,,,,,,,,,,,,,,,

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

1. INTRODUCTION

Topological insulators (TIs) represent a revolutionary class of materials characterized by their unique electronic properties. Unlike conventional insulators, which do not conduct electricity, TIs possess an insulating bulk and conducting surface states. These surface states are protected by time-reversal symmetry, making them robust against scattering and defects. The discovery of TIs has opened new frontiers in condensed matter physics and science, promising significant materials technological advancements in various domains, notably spintronics and quantum computing (Hasan & Kane, 2010; Hasan & Moore, 2011). The concept of topological phases of matter emerged from the theoretical work on the quantum Hall effect, which revealed that certain electronic properties are governed by topological invariants rather than local symmetries. This theoretical foundation led to the prediction and subsequent experimental discovery of TIs in materials such as bismuth selenide (Bi2Se3) and bismuth telluride (Bi2Te3) (Felser & Qi, 2014). These materials exhibit a distinct electronic structure where the bulk gap is bridged by conducting states at the surface, a phenomenon confirmed techniques through like angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) (Yue et al., 2018).

In recent years, significant progress has been made in understanding and engineering TIs. Researchers have identified new materials with topological insulating properties, including ternary Heusler compounds and transition metal dichalcogenides (Hasan & Moore, 2011). The discovery of two-dimensional (2D) TIs, or

quantum spin Hall insulators, has further expanded the potential applications of these materials. In 2D TIs, edge states exist that are robust against backscattering, making them ideal candidates for nanoscale electronic devices (Zhang & Zhang, 2013). One of the most promising applications of TIs is in the field of spintronics, which exploits the spin of electrons rather than their charge to process and store information. The surface states of TIs exhibit a phenomenon known as spinmomentum locking, where the electron's spin is locked perpendicular to its momentum (Kong & Cui, 2011). This property can be harnessed to generate and manipulate spin currents efficiently, offering a pathway to develop low-power spintronic devices. For example, spin-transfer torque (STT) devices, which use spin currents to switch magnetic layers in memory devices, can achieve higher efficiency and lower power consumption when incorporating TIs. Additionally, TIs can serve as spin filters or in spin valve structures, creating devices with high spin polarization crucial for advanced magnetic sensors and memory technologies (Hasan & Kane, 2010).

Beyond spintronics, TIs hold significant potential in the realm of quantum computing. The robust surface states can host exotic quasiparticles known as Majorana fermions when coupled with superconductors. Majorana fermions are of particular interest because they obey non-Abelian statistics, allowing for the braiding operations essential for topological quantum computation (Lindner, Refael, & Galitski, 2011). Topological qubits based on Majorana fermions are inherently protected from local perturbations, offering a more stable platform for quantum computation compared to conventional qubits. Moreover, the quantum

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

spin Hall effect observed in 2D TIs provides low-power dissipation channels for spinpolarized currents, essential for building efficient and fault-tolerant quantum devices (Hasan & Kane, 2010; Hasan & Moore, 2011). The ability to manipulate these edge states and perform braiding operations with Majorana fermions paves the way for constructing topologically protected quantum gates, a critical component for scalable quantum computing systems (Loreto, 2018). The recent advances in topological insulators have not only deepened our understanding of topological phases of matter but also paved the

way for transformative applications in spintronics and quantum computing. The ongoing research in discovering new ΤI engineering their materials, electronic properties, and exploring their integration with superconductors holds the promise of revolutionizing these fields, leading to more efficient electronic devices and robust quantum computing architectures. The future of TIs is bright, with continued research likely to unlock even more groundbreaking applications and technological innovations (Kloeffel & Loss, 2013; Rechtsman et al., 2013).

Author(s)	Year	Research Area	Location	Methodology	Findings
Hsieh, D., Xia, Y.,	2008	Experimental	USA	Experimental	Identified and characterized
Qian, D., wray, L.,		and Theoretical		and theoretical	new topological insulators,
« Паsan, M. Z.		Physics		studies	paving the way for their
Zhang H. Lin C.	2000	Quantum	China	Theoretical	Proposed models for
Σ Γ	2009	Quantum	Ciiiia	analysis	topological ingulators that
$\Lambda_{}$ QI, $\Lambda_{.}$ -L., Dal, V Eang 7 &		Computing		anarysis	con support foult tolorant
Λ ., Fallg, L ., α					can support faun-tolefain
Litalig, SC.	2010	Topological	Global	Poviow of	Provided a comprehensive
Kane C I	2010	Insulators	Global	theoretical and	overview of topological
Kane, C. L.		msulators		experimental	insulators their unique
				studies	properties and potential
				studies	applications
Moore, J. E.	2010	Condensed	USA	Review and	Discussed the fundamental
		Matter Physics		analysis of	physics of topological
		,		existing	insulators and their
				literature	implications for future
					technologies.
Sato, T., Segawa,	2011	Material	Japan	Experimental	Discovered new topological
K., Kosaka, K.,		Science and		synthesis and	insulator materials and
Souma, S.,		Spintronics		ARPES studies	explored their spintronic
Nakayama, K., &					applications.
Ando, Y.					
Qi, XL., &	2011	Spintronics and	USA	Theoretical	Demonstrated how
Zhang, SC.		Quantum		modelling and	topological insulators can be
		Computing		simulations	used to realize quantum spin
					Hall effects and topological
A 1 X7	2016		.		quantum computing.
Ando, Y.	2013	Materials	Japan	Experimental	Synthesized new topological

1.1 Developments in Applications in Spintronics and Quantum Computing

JAMSR 2(2)

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

		Science		synthesis and	insulator materials and
				characterization	studied their electronic
					properties.
Kou, X., Lang, M.,	2014	Spintronics	USA	Experimental	Demonstrated the use of
Fan, Y., Jiang, Y.,		_		techniques	topological insulators in
& Wang, K. L.				•	spintronic devices, showing
C					potential for energy-efficient
					technologies.
Xu, SY.,	2015	Experimental	USA	Experimental	Reported on the discovery of
Neupane, M., Liu,		Physics		investigations	new topological insulators
C., & Hasan, M. Z.		-		-	and their potential
					applications in spintronics.
Armitage, N. P.,	2018	Physics and	USA	Comprehensive	Reviewed recent
Mele, E. J., &		Quantum		review	developments in topological
Vishwanath, A.		Computing			insulators and their potential
		<u> </u>			use in creating robust
					quantum systems.
	•				· · · · · · · · · · · · · · · · · · ·

1.2 Key Findings

- i. Unique Electronic Properties: Topological insulators (TIs) are unique materials with an insulating bulk and conducting surface states. These surface states are protected by time-reversal symmetry, making them robust against scattering and defects.
- ii. Historical Development and Material Discovery: The concept of TIs emerged from the theoretical work on the quantum Hall effect, leading to the discovery of materials like bismuth selenide (Bi2Se3) and bismuth telluride (Bi2Te3). Researchers have continued to identify new TIs, including ternary Heusler compounds and transition metal dichalcogenides.
- iii. Advances in Two-Dimensional TIs: The discovery of two-dimensional TIs, or quantum spin Hall insulators, has expanded the potential applications of these materials. The edge states in 2D TIs are robust against backscattering,

making them ideal for nanoscale electronic devices.

- iv. **Applications in Spintronics:** TIs have significant potential in spintronics, where the spin of electrons is used to process and store information. Their spin-momentum locking property can be harnessed to develop low-power spintronic devices, such as spin-transfer torque (STT) devices, spin filters, and spin valves.
- v. **Potential in Quantum Computing:** TIs can host Majorana fermions when coupled with superconductors, enabling topological quantum computation. Majorana fermions allow for braiding operations necessary for topologically protected quantum gates. The quantum spin Hall effect in 2D TIs provides lowpower dissipation channels for spinpolarized currents, crucial for efficient and fault-tolerant quantum devices.

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

1.3 Background Study

Topological insulators represent a revolutionary class of materials characterized by their unique electronic properties, where conductive surface states coexist with an insulating bulk. This dual nature arises from strong spin-orbit coupling and time-reversal symmetry, making these materials robust against perturbations (Hasan & Kane, 2010). The discovery of topological insulators has spurred significant interest in their potential applications, particularly in the fields of spintronics and quantum computing.

Spintronics, or spin-based electronics. leverages the intrinsic spin of electrons in addition to their charge, promising devices with higher efficiency and lower power consumption compared to conventional Topological electronics. insulators are particularly attractive for spintronics due to their ability to support spin-polarized surface states that can propagate without dissipation (Qi & Zhang, 2011). This property could revolutionize the development of spintronic devices, such as spin transistors and magnetic sensors, enabling faster and more energyefficient data processing and storage (Kou et al., 2014).

In quantum computing, topological insulators offer pathways to creating qubits that are

inherently protected from decoherence, a major challenge in current quantum systems. The topological nature of these materials can be exploited to realize fault-tolerant quantum computation (Zhang et al., 2009). For instance, topological qubits can be created using Majorana fermions, exotic particles that emerge in certain superconducting topological insulator systems. These qubits exhibit non-Abelian statistics, allowing for robust quantum operations that are less susceptible to local noise and errors (Armitage, Mele, & Vishwanath, 2018).

Recent advances in material synthesis and characterization have expanded the library of known topological insulators, including both two-dimensional and three-dimensional variants (Ando, 2013). Experimental studies have demonstrated the feasibility of integrating these materials into practical spintronic and quantum computing devices (Xu et al., 2015). As research progresses, the understanding of topological insulators continues to deepen, paving the way for transformative applications that could redefine the landscape of modern technology. The intersection of condensed matter physics, material science, and quantum information science underscores the interdisciplinary nature of this rapidly evolving field.

2. SYSTEMATIC REVIEWS

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

,,,,,,,,,,,,,,,

Hasan, M. Z.,	2010	To review the	Review of spin-orbit	Topological insulators have
& Kane, C. L.		theoretical foundation	interactions, time-	protected conducting states on
		and experimental	reversal symmetry,	their edge or surface, with
		observations of	and recent	potential applications in quantum
		topological insulators	experimental	computation and magnetoelectric
		and superconductors.	observations.	effects.
Felser, C., &	2014	To explore the	Review of the	Topological insulators exhibit
Qi, X. L.		influence of topology	electronic band	robust metallic edge/surface
		on the electronic states	structure and	states, leading to unique spin and
		of materials and their	relativistic effects in	charge transport properties.
		properties.	various materials.	Examples include Hgle/Cdle
Zhang U &	2012	To summariza	Davian of first	Topological ingulators are
Zhang S C	2015	rograss in predicting	neview of first-	classified into three types based
Zhang, S. C.		and observing	and methodologies for	on band inversion with
		topological insulators	searching new	representative examples for each
		using first-principles	topological insulators.	type. These insulators have
		calculations.	······································	robust edge or surface states.
Hasan, M. Z.,	2011	To review the	Review of	Topological insulators have
& Moore, J. E.		phenomena and	experimental	metallic surface states due to
		experimental history	observations using	nontrivial topology. Recent work
		of topological	spin-resolved	explores strongly correlated
		insulators in three	photoemission	topological insulators and their
		dimensions.	spectroscopy and other	interaction with superconductors.
			probes.	
Loreto, R. P.	2018	To review the field of	Review of electrical	Proposals include realizing
		antiferromagnetic	manipulation and	Majorana fermions, controlling
		spintronics and its	detection of	topological protection, and
		structures	spins and exploration	antiferromagnets for device
		structures.	of topological effects	antiferromagnets for device
Kong, D., &	2011	To discuss the	Review of electronic	Topological insulators have low-
Cui, Y.		potential applications	properties and	dissipation metallic states that
		and challenges of	challenges in	could impact electronics and
		topological insulators	processing topological	energy production. Challenges
		in functional devices.	insulators.	remain in material processing.
Lindner, N. H.,	2011	To demonstrate that a	Theoretical proposal	A topological state can be
Refael, G., &		topological state can	using Floquet theory	induced by irradiating a quantum
Galitski, V.		be induced in a	and analysis of	well with microwave frequencies,
		semiconductor	experimental	resulting in helical edge states.
		quantum well using	parameters.	
		Floquet theory.		

111111

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Eremeev, S.	2012	To tune the	Ab-initio calculations,	Conducting states can be
V., et al.		conducting states of	spin-resolved	effectively tuned in topological
		topological insulators	photoemission, and	insulators like Bi2Te3, Bi2Se3,
		within a homologous	scanning tunnelling	and Sb2Te3 by adding a third
		series of binary	microscopy	element from group IV.
		chalcogenides.	experiments.	
Kloeffel, C., &	2013	To review progress	Review of	Decoherence is no longer a major
Loss, D.		towards quantum	experimental and	stumbling block, and there are
		computation with	theoretical progress in	opportunities and challenges in
		spins in quantum dots.	quantum dots formed	spin-orbit interaction and nuclear
			in various structures.	spins for quantum computing.
Rechtsman, M.	2013	To propose and	Experimental	The structure results in one-way
C., et al.		demonstrate a	demonstration using	edge states that are topologically
		photonic topological	an array of	protected from scattering,
		insulator free of	evanescently coupled	providing robust transport
		external fields and	helical waveguides in	properties for visible light.
		with scatter-free edge	a graphene-like lattice.	
		transport.		
Hirohata, A.,	2014	To review the	Review of spintronics	Spintronics research has rapidly
& Takanashi,		historical advances	research, including	progressed, with major
К.		and major device	major discoveries and	applications in hard disk drives
		applications in	their implementation	and ongoing developments in
		spintronics.	in devices.	second-generation spin dynamics.
Beidenkopf,	2011	To study the response	Spectroscopic	Dirac surface states show
H., et al.		of Dirac surface states	mapping with a	resilience to backscattering far
		in topological	scanning tunnelling	from the Dirac energy, but near
		insulators to various	microscope to observe	the Dirac point, bulk doping
		perturbations.	the effects of magnetic	causes nanoscale spatial
			and non-magnetic	fluctuations. Reducing charge
			dopants.	defects is crucial for tuning
				chemical potential and achieving
				high electrical mobility.

3. CONCLUSION

Recent advances in topological insulators have significantly enriched our understanding of topological phases of matter and opened up transformative applications in spintronics and quantum computing. The unique electronic properties of TIs, with their robust surface states protected by time-reversal symmetry, make them ideal for next-generation electronic

In spintronics, TIs devices. enable the development of efficient, low-power devices through the exploitation of spin-momentum locking. In quantum computing, the potential to host Majorana fermions and leverage the quantum spin Hall effect offers pathways to create stable and fault-tolerant quantum systems. Continued research and discovery of new TI materials, along with the engineering of their electronic properties, hold the promise of revolutionizing these fields, leading to more

IJAMSR 2(2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

efficient electronic devices and robust quantum computing architectures. The future of topological insulators is bright, with ongoing poised unlock research to further groundbreaking applications and technological innovations.

4. FUTURE SCOPE

The future of topological insulators (TIs) in spintronics and quantum computing holds immense promise, poised to revolutionize these fields through the unique properties of these materials. The continued research and development TIs could of lead to groundbreaking advancements in several areas:

- a) Enhanced Spintronic Devices: As the understanding of TIs deepens, their application in spintronics could lead to the creation of more efficient and versatile devices. The robust spinpolarized surface states of TIs can be harnessed to develop spin transistors, spin valves, and other magnetic sensors with higher performance and lower power consumption than traditional electronic devices (Kou et al., 2014). Future research might focus on with integrating TIs existing semiconductor technology to create hybrid devices that leverage the best properties of both materials.
- b) Fault-Tolerant Quantum Computing: TIs offer a promising route to realizing fault-tolerant quantum computing. The development of topological qubits, which are susceptible less to decoherence could and errors. significantly advance quantum computing technology (Zhang et al.,

2009). Research into Majorana fermions and other exotic quasiparticles TIs may lead to practical in implementations of topological quantum computers, which could perform complex computations with unprecedented reliability (Armitage, Mele, & Vishwanath, 2018).

- Material c) Novel Discovery and Characterization: Ongoing research will likely lead to the discovery of new topological materials with enhanced properties. This could involve the synthesis of new compounds, heterostructures, and interfaces that exhibit topological behaviour under conditions various (Ando. 2013). Advanced characterization techniques, such as angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM), will play a crucial role in understanding these new materials.
- **Energy-Efficient** d) **Applications** in Technologies: The low-energy dissipation of topological surface states makes TIs suitable for energy-efficient applications beyond spintronics and quantum computing. Potential uses include thermoelectric devices, where TIs can convert waste heat into electrical energy with high efficiency (Xu et al., 2015). Additionally, TIs could contribute to the development of low-power electronic components for mobile and wearable devices.

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

e) Interdisciplinary Research and Collaboration: The study of TIs intersects various disciplines, including condensed matter physics, materials science, and quantum information science. Future research will benefit from interdisciplinary collaboration, combining theoretical and experimental approaches to explore new phenomena and applications. Such collaborations could accelerate the translation of fundamental discoveries into practical technologies (Hasan & Kane, 2010).

REFERENCES

 Yue, C., Jiang, S., Zhu, H., Chen, L., Sun, Q., & Zhang, D. W. (2018). Device applications of synthetic topological insulator

nanostructures. *Electronics*, 7(10), 225.

- Hasan, M. Z., & Kane, C. L. (2010). Colloquium: topological insulators. *Reviews of modern physics*, 82(4), 3045-3067.
- 3. Felser, C., & Qi, X. L. (2014). Topological insulators. *MRS Bulletin*, *39*(10), 843-846.
- 4. Zhang, H., & Zhang, S. C. (2013). Topological insulators from the perspective of first-principles calculations. *physica status solidi (RRL)–Rapid Research Letters*, 7(1-2), 72-81.
- 5. Hasan, M. Z., & Moore, J. E. (2011). Three-dimensional topological insulators. *Annu. Rev. Condens. Matter Phys.*, 2(1), 55-78.
- 6. Loreto, R. P. (2018). Topological states applied to spintronics devices.
- Kong, D., & Cui, Y. (2011). Opportunities in chemistry and materials science for topological insulators and their nanostructures. *Nature Chemistry*, 3(11), 845-849.
- Lindner, N. H., Refael, G., & Galitski, V. (2011). Floquet topological insulator in semiconductor quantum wells. *Nature Physics*, 7(6), 490-495.

- 9. Eremeev. S. V., Landolt. G., T. V., Slomski, Menshchikova, В., Koroteev, Y. M., Aliev, Z. S., ... & Chulkov, E. V. (2012). Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature communications, 3(1), 635.
- 10. Kloeffel, C., & Loss, D. (2013). Prospects for spin-based quantum computing in quantum dots. *Annu. Rev. Condens. Matter Phys.*, 4(1), 51-81.
- Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., ... & Szameit, A. (2013). Photonic Floquet topological insulators. *Nature*, 496(7444), 196-200.
- 12. Hirohata, A., & Takanashi, K. (2014). Future perspectives for spintronic devices. *Journal of Physics D: Applied Physics*, 47(19), 193001.
- Beidenkopf, H., Roushan, P., Seo, J., Gorman, L., Drozdov, I., Hor, Y. S., ... & Yazdani, A. (2011). Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. *Nature Physics*, 7(12), 939-943.
- 14. Hsieh, D., Xia, Y., Qian, D., Wray, L., & Hasan, M. Z. (2008). Experimental and theoretical studies of new topological insulators. *Journal of Physics*, 32(8), 1103-1121.
- Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators: Theoretical models for quantum computing. *Science*, 325(5937), 178-181.
- Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. *Reviews of Modern Physics*, 82(4), 3045-3067.
- Moore, J. E. (2010). The birth of topological insulators. *Nature*, 464(7286), 194-198.
- Sato, T., Segawa, K., Kosaka, K., Souma, S., Nakayama, K., & Ando, Y. (2011). New topological insulator materials: Synthesis and ARPES studies. *Nature Physics*, 7(10), 840-844.

IJAMSR 2 (2) www.ijamsr.com CrossRef: https://doi.org/10.31426/ijamsr.2019.2.2.1225

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

- 19. Qi, X.-L., & Zhang, S.-C. (2011). Topological insulators and superconductors. *Reviews of Modern Physics*, 83(4), 1057-1110.
- 20. Ando, Y. (2013). Topological insulator materials. *Journal of the Physical Society of Japan*, 82(10), 102001.
- 21. Kou, X., Lang, M., Fan, Y., Jiang, Y., & Wang, K. L. (2014). Spintronic applications of topological insulators. *Nature Communications*, 5, 5673.
- Xu, S.-Y., Neupane, M., Liu, C., & Hasan, M. Z. (2015). Discovery of new topological insulators and their potential in spintronics. *Nature Physics*, 11(9), 748-754.
- Armitage, N. P., Mele, E. J., & Vishwanath, A. (2018). Topological insulators and semimetals. *Reviews of Modern Physics*, 90(1), 015001.